Antioxidants Complement the Requirement for Protein Chaperone Function to Maintain β-Cell Function and Glucose Homeostasis
نویسندگان
چکیده
Proinsulin misfolding in the endoplasmic reticulum (ER) initiates a cell death response, although the mechanism(s) remains unknown. To provide insight into how protein misfolding may cause β-cell failure, we analyzed mice with the deletion of P58(IPK)/DnajC3, an ER luminal co-chaperone. P58(IPK-/-) mice become diabetic as a result of decreased β-cell function and mass accompanied by induction of oxidative stress and cell death. Treatment with a chemical chaperone, as well as deletion of Chop, improved β-cell function and ameliorated the diabetic phenotype in P58(IPK-/-) mice, suggesting P58(IPK) deletion causes β-cell death through ER stress. Significantly, a diet of chow supplemented with antioxidant dramatically and rapidly restored β-cell function in P58(IPK-/-) mice and corrected abnormal localization of MafA, a critical transcription factor for β-cell function. Antioxidant feeding also preserved β-cell function in Akita mice that express mutant misfolded proinsulin. Therefore defective protein folding in the β-cell causes oxidative stress as an essential proximal signal required for apoptosis in response to ER stress. Remarkably, these findings demonstrate that antioxidant feeding restores cell function upon deletion of an ER molecular chaperone. Therefore antioxidant or chemical chaperone treatment may be a promising therapeutic approach for type 2 diabetes.
منابع مشابه
Co-expression of recombinant human nerve growth factor with trigger factor chaperone in E. coli
Nerve growth factor (NGF) is a neurotrophic factor that is functional in the survival, maintenance and differentiation of nervous system cells. This protein has three subunits, of which the beta subunit has the main activity. Its structure consists of a cysteine knot motif made up of beta strands linked by disulfide bonds. It can be used as a therapeutic agent in the treatment of many diseases....
متن کاملThe Effect of Resistance and Progressive Training on HSP 70 and Glucose
Skeletal muscle may develop adaptive chaperone and enhancementdefense system through daily exercisestimulation. The present study investigated resistance and exhaustion training alters the expression of chaperoneproteins. These proteins function to maintain homeostasis, facilitate repair from injury and provide protection. Exercise-induced production of HSPs in skeletal muscle and peripheral le...
متن کاملThe Effect of Resistance and Progressive Training on HSP 70 and Glucose
Skeletal muscle may develop adaptive chaperone and enhancementdefense system through daily exercisestimulation. The present study investigated resistance and exhaustion training alters the expression of chaperoneproteins. These proteins function to maintain homeostasis, facilitate repair from injury and provide protection. Exercise-induced production of HSPs in skeletal muscle and peripheral le...
متن کاملImpact of Magnesium Deficiency on Pancreatic β-Cell Function in Type 2 Diabetic Nigerians
Objective: Pancreatic b-cell dysfunction is described to be present at the diagnosis of type 2 diabetes mellitus (T2DM) and progressively deteriorated with disease duration. However, its progression is variable and potentially influenced by several factors. The Magnesium (Mg) deficiency mediates insulin resistance but reports regarding its role in pancreatic β-cell dysfunction are scarce and co...
متن کاملEffects of High Intensity Interval Training and Combined Training on Serum Apelin Levels and pancreatic β-cell function in Overweight Type 2 Diabetes Women
Objective: Physical exercise is a well-established therapeutic method in type 2 diabetes treatment. The purpose of this study was to investigate the effects of eight weeks combined and High Intensity Interval Training on serum apelin levels and pancreatic β-cell function in overweight women with type 2 diabetes mellitus. Materials and Methods: Fifty-two overweight female patients with type 2 d...
متن کامل